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quantum mechanics* 
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Institute of Physics, M Curie-SWodawska University, pl. M Curie-Sklodowskicj I ,  20-031 
Lublin. Poland 

Received 8 November 1991, in final form 13 March 1992 

Abstract. In the paper, the principles of the algebraic generator coordinate method are 
presented. The wnstruction of the collective space for a many-body system described by 
a density matrix is shown. 

1. Introduction 

The generator coordinate method (GCM) originally founded by Griffin et al [l]  has 
been used successfully in many problems of nuclear physics, e.g. see [2]. It is a fully 
quantum mechanical method that allows construction of some spaces of states of 
nuclear collective motion by means of a very general ansatz for a trial function. It is 
a continuous superposition of the so-called generating functions 14) labelled by a 
certain number of real or complex parameters q = { q ' ,  q 2 , .  . . , q'} ,  the so-called gen- 
erator coordinates. For every q the generator function is a vector in the many-body 
Hilbert space. The trial function is expressed by a multidimensional integral 

The variational principle for the expectation value of the total many-body Hamiltonian 
H leads to the very well known Griffin-Hill-Wheeler integral equations for the weight 
function u ( q ) .  There are many useful approximations to the exact method [2]. Here 
we want to mention only one of the more elegant ones called the Gaussian overlap 
approximation where it is possible to obtain directly a collective Hamiltonian in the 
form of the usual second-order differential operator for collective energy plus a 
collective potential corrected by the zero-point energy [3]. On the other hand, the GCM 
method can be treated as a kind of a projection technique that allows construction of 
a full collective space from a generator function [4]. 

The states (1) are pure states in the quantum mechanical sense. For many cases 
where a statistical approach is required the ansatz (1) is not sufficient and does not 
provide the appropriate formalism. One needs to extend the GCM approach to the 
mixed states generated from a given density matrix. The way to this goal is proposed 
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in this paper. We construct a collective space generated from a fixed density matrix 
of the system under consideration. We introduce the generator coordinates (the collec- 
tive variables) by means of the appropriate group of motions, a compact Lie group 
as, for example, in [SI for pure states. What we call the group of motions defines the 
possible types of excitations in the physical system, in many cases it corresponds to 
the dynamical symmetries. The case of a compact group is more elementary and does 
not require very refined algebraical and analytical methods. This allows us to show 
more clearly the main features of the formalism and give a physical interpretation to 
it. Extension to the non-compact case is currently in progress. Because of the extended 
use of algebraical methods we call the proposed approach the algebraic generator 
coordinate method (AGCM). 

A Bogusz and A G6idi 

2. A construction of a collective space 

In this section we describe the maimsteps that are needed to construct the collective 
space generated by a density operator and a given group of motions. Most of the 
required mathematical details to support the physical intuition are given in the appen- 
dix, and the practical way of using the formalism in the main text. We follow the basic 
idea of the GNS construction [6,7] that was used intensively in the algebraical approach 
to statistical classical and quantum mechanics. The main object in this formalism is 
an algebra with involution and the space of functionals on it. These functionals are 
called the metastates of the system [ 8 ] .  

For a given (usually approximate) density operator p of the physical many-body 
system described in the appropriate many-body Hilbert space &p we choose a symmetric 
*-algebra d(G) [9-11] of all operators T(g), where gE G and G is a compact group 
of motions, furnishing a unitary operator representation of the group G in the camer 
space %f More precisely speaking this algebra is the smallest C* algebra of operators 
in &p containing the operator representation 'I On the algebra Sa( G) one can define 
a natural positively defined functional (the metastate) generated by the density operator 
p as follows: 

( P ;  S)=Tr(pS) where SE d( G). (2) 

The density operator is normalized in the standard way to unity. One can notice here 
that the functional (2) satisfies the very well known Cauchy-Schwartz inequality 

I(p; S+R)l2s(p; S+S)(p;  RtR) for all S, R E Sa( G). (3) 

Particularly, from the expression (3) one can see that the function ( p ;  T(g)) is bounded, 
namely 

IKP; %))IS 1 for all g E G. (4) 

This property is essential for mathematical proofs in further considerations. 

the ansatz ( I )  introducing the algebra consisting of the following elements: 
Following the idea of the GCM method one can now postulate a generalization of 

lG dg u(g)T(g) ( 5 )  

where dg means the invariant Haar measure on G and the complex valued functions 
U are square integrable on G. However, we prefer to use a more elegant, though more 



Algebraic generator coordinate method 4615 

abstract, way, considering the algebra L2(G) of square integrable complex functions 
with the convolution defined by the integral 

as a multiplication law [9,11]. The L2(G) algebra is a Banach algebra with involution 
denoted by # and defined by the expression 

u ” ( g )  = u*(g- ’ )  (7) 
where * is the usual complex conjugation. It is worthwhile also to notice that L2(G) 
is the Hilbert space itself with the scalar product 

. .  . 
To construct now a collective space generated by the density operator p one needs to 
define a metastate on the algebra L2(G). Making use of the functional (2) by theorems 
IV.3.1-3.3 of [12] (see the appendix) one can write the metastate on L2(G) as the 
following integral 

( P ;  U) = IC dg u ( g ) ( p ;  Rd)  where U E L2(G). (9) 

We used here the same clear notation for the functional on sP( G )  and the metastate 
on L2(G). In definition (9) it is assumed that ( p ;  T ( g ) )  is a square integrable function, 
i.e. it belongs to L2(G).  Because the functional (2) is positively defined on d ( G )  the 
metastate (9) is also a positive functional on L2( G) i.e. ( p ;  U * 0 U) 3 0 for all U E L2( G). 
The functional (9) could be used as a new, physical scalar product in L2(G) but it 
can happen that a non-zero vector could have the zero norm. To remove these 
pathological cases we use the standard ONS procedure. For this purpose we define the 
left-ideal in the algebra L2( G )  that contains all the pathological elements 

.%ZO = ( U €  L2(G):  ( p ;  a x  0 u ) = O  for all a EL’(G)]. (10) 

For simplicity we refer to this ideal as a null-ideal for the density matrix p. Now the 
next step leads to the pre-Hilbert space 91 obtained as quotient algebra L2(G)/.%ZE,, 
that after the standard procedure to complete it becomes the Hilbert space of states 
generated by the density operator p and the group of motions G. The scalar product 
in X is now defined by the metastate 

(U1 U ) % = ( p ;  U* 0 U). (11) 

On the left-hand side of the definition ( l l ) ,  in principle one needs to write the classes 
of equivalent elements that are elements of the space 91. However, by tradition in 
quantum mechanics we write some of their representatives instead. The scalar product 
(11) can be rewritten in the form of double integral over the group manifold 

( u I ~ ) x  = J, dg’ J dg u*(g ‘ ) (p;  T ( g ’ - ’ g ) ) U ( g ) .  ( I la)  
C 

This formula shows that the scalar product generated by the density operator is 
non-local, where the non-local kemel function is the generalized overlap function 
(GOF), that is a measure of coupling between ‘deformations’ g and g’. In order to 
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show that p generates the collective space we will find a link to the standard GCM 

approach. Let us consider the case of a pure state p = l-)(-l, i.e. ( p ;  T ( g ) )  = (-1 T(g)l-) ,  
where I-) is a state vector belonging to the many-body Hilbert space X. The proof 
that the element U belongs to the null ideal Bp if and only if the norm of the vector 
(1) with the generating function T(g)l-) in the many-body space is equal to zero, i.e. 
if 

A Bogusr and A G6idi 

is given in the appendix. This means that the space 

% =[IG dg u(g)T(g)l-): E 3.) (13) 

corresponds exactly to the null space of the GCM method. It implies that the completed 
quotient space XOcM = i.e. the collective space obtained from the GCM approach 
is isomorphic to the space X = L 2 ( G ) / 3 E , .  This isomorphism is given by 

7: X 3 u + l T u ) =  dgu(g)T(g)l-). (14) 

One can directly show that it conserves the scalar product; it has the same value in 
both spaces X and in the many-body one: 

I, 
(U IO1.X = I TU) ( 1 9  

i.e. the transformation 7 is unitary. This proves the equivalence of both spaces: the 
standard GCM space and the space obtained by the procedure given above with the 
metastate generated by the density operator p = l-)(-l. In this way we see that instead 
of the standard GCM procedure one can use algebraic techniques that are more powerful 
than the older approach. In general, we define the metastate making use of the formulae 
(2) and (9) and we create the appropriate collective space X. 

In many applications it is important to know how the group G acts onto the 
collective states X. We define the action by the left shift operators as follows: 

S L ( g ’ ) u k )  = u(g‘-’g) where U E X. (16) 

A direct calculation (see appendix) shows that the representation (16) is unitary and 
for the case of a pure state generating the collective space the unitary operator 7, 

equation (14), is a unitary isomorphism, i.e. 

7 z L ( g ) =  T ( g ) 7  (17) 

and the representation SL and T are unitarily, physically equivalent. 
The formulation of AGCM allows for direct generalization of the Griffin-Hill- 

Wheeler (GHW) equations in the case of the collective space generated by p. It is also 
possible to derive the collective Hamiltonian within the Gaussian overlap approxima- 
tion applying directly the formulae obtained in [3] with new GOF instead of a traditional 
overlap function. The GHW equation can be expressed as 
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where the collective kinetic energy operator is the second-order differential operator 

in which y~ is the appropriate GOA metric tensor calculated with GOF and (d-’)kl 
denotes the collective mass obtained by the formula given in [3] with substitution of 
the reduced energy kernel by our generalized energy kernel defined as follows: 

where g = g ( q , ,  . . . , q,), i.e. the parameters qx parametrize the group elements and 
they stand for the collective variables. The collective potential 51 consists of the average 
energy of the system calculated with the density operator p corrected by the so-called 
zero-point energy. The asymmetry operator 9 in most cases disappears but it can be 
derived analogously. 

3. The collective space and the collective energy 

Now we are ready to construct an explicit realization of the collective space and 
calculate the collective energy. For the sake of simplicity we consider here a special 
but often-met case. Let us denote by lp A a )  the eigenbasis of H; where p denotes an 
invariant with respect to G set of quantum numbers, ‘A’ labels the irreducible rep- 
resentations of G and ‘a’ denotes a set of remaining quantum numbers required for 
unique specification of the basis for irreducible representation ‘A’ of G. In addition 
we assume that the density operator is also diagonal in the eigenbasis of H, e.g. p is 
a function of the Hamiltonian. According to our assumptions the following relations 
are fulfilled: 

P I P  A 4 = p(wAa)lpAa) (22) 

HIp A a ) =  E(pAa) lpAa) .  (23) 

We further define the so-called overlap operator known also in standard GCM, as 
follows: 

( N u ) ( g )  = IG dg’(p; T(g?g’ ) )u (g ’ ) .  (24) 

The operator N is the continuous, Hermitian and positive operator in L2(G). In 
addition, it commutes with the representation Z L  and because of the fact that the 
group G is compact it is of Schmidt-Hilbert type (appendix). Using the overlap 
operator, the scalar product in X one can write in the following way 

( u ~ u ) s u = ( P ;  U* 0 U)= dgu*(g)(No)(g). (25) L 
Because of continuity of the overlap operator N the functional (25) as a functional of 
U, with fixed U function, is also continuous. By theorem IV.3.2 of [ 121 (see the appendix), 
to find the null ideal %,, it is enough to solve the homogeneous overlap equation 

Nu=O. (26) 
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In our case the equation can be easily solved in the same way as in the paper [5]. One 
can calculate even more. Because the operator X is of Schmidt-Hilbert type operator 
it has only discrete series of eigenvalues and its eigenstates can be used as a basis in 
the collective space X. One can also note that the action of the group G onto the states 
IpAa) is, by their definition, given by 

A Bogusz and A G&di 

where D$b are the matrix elements of the irreducible representation A of the group 
G. The eigenvalues problem of the overlap operator can now be solved making use 
of the expansion of the searched eigenfunctions in the matrix elements D&,(g) [5]. 
After some algebra the solutions of the eigenproblem of the overlap operator 

(N&)(g )  = dg’Tr(pT(g-’g’))u.,,(g’) J‘, 
= A(Aa‘)u..,(g) (28) 

in our case determined by equation (22), can be found in the form: 

ut&) = (dimo[A])”’Dt$(g) 

where dimo[A] denotes the dimension of the irreducible representation A and Tr is 
the trace calculated within the space created by the vectors IpAa). The collective space 
is now spanned by all eigenvectors (more precisely by their classes that are elements 
of the quotient space L2(G) /Be , )  ut&) for that A(Aa’)#O. One can show directly 
that the vectors (for non-zero A) 

(29) 

furnish the orthonormalized basis in X. The states (29) correspond to the so-called 
natural states in the standard GCM approach. The collective Hamiltonian of our s p t  :m 
can be now obtained by the projection of the Hamiltonian (23) onto the collective 
space X. For this purpose it is sufficient to calculate the matrix elements of the 
Hamiltonian (23) within the states (29). The result of these calculations is given below: 

I -112 A et&) = N A a  1 u . . k )  

The matrix elements between the vectors belonging to different irreducible representa- 
tions vanish, i.e. for A # A’. It means that the collective Hamiltonian obtained by the 
projection of the Hamiltonian (23) is diagonal in the basis (29) and the matrix elements 
(30) are equal to the collective energies. The collective energies (30) are labelled by 
three sets of quantum numbers: A, that denotes the irreducible representation of the 
group G and two sets of additional quantum numbers a and a’, where a is required 
to distinguish states within a given irreducible representation A. The set of extra 
quantum numbers a’ describes some intemal motions of the system in respect to the 
group of motion G. The well known example of such a type of quantum number is 
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the number K representing a projection of the angular momentum vector onto an 
internal axis in the asymmetric top [13]. This dependence on the internal collective 
quantum numbers is a very interesting feature of the formalism and requires further 
investigation. 

4. An illustration: ISU(6) 3 SU(5) 3 SO(5) 3 SO(J)&iioteracting boson system 

In this section we illustrate our considerations by a simple example. This example 
allows us to show another feature of the formalism developed in previous sections. 

Let us consider the model of interacting bosons system consisting of a finite number 
of bosons N. The bosons occupy two levels with angular momenta I = 0 (s-bosons) 
and I = 2  (d-bosons), as in the popular nuclear collective model of interacting bosons 
(IBM) [14]. Let us assume that the metastate of the boson system is determined by a 
canonical density operator p. f i e  dynamical symmetry of the system is the six- 
dimensional unitary group SU(6). For simplicity the Hamiltonian we choose to be 
diagonal within the following group chain 

S U ( 6 ) ~ S U ( 5 ) ~ S 0 ( 5 ) ~ S 0 ( 3 ) .  (31) 

The quadrupole bosons are characterized here by their number n that ranges from 0 
to N and their seniority U that changes from n, with step -2, to 0 or 1. The quantum 
number x distinguishes the equivalent representations for a given seniority and has 
the physical meaning of the maximum number of boson triplets coupled to the total 
angular momentum zero [15]. It ranges from 0 to the integer part of u/3. To complete 
the description of states there are two additional well known numbers: the total angular 
momentum quantum number L and its projection M. The selection rules for these are 
as follows: 

. .  . 

u - 3 x ~ L ~ 2 ( u - 3 x )  
(32) 

L # 2( U -3x) - 1. 

Thus, the quantum state is denoted by the ket INnuxLM) and the full group of motion 
is SU(6) and the numbers N, n, U, L denote the irreducible representations in the group 
chain (31). Using the notation of [14] the eigenvalues of the interacting d-boson 
Hamiltonian can be written in the following simple expression: 

E = E S U i 6 ) + E S U ( S ) + E S O ( 5 ) + E S O i 3 )  (33) 

where Eo denote the energies that can be expressed by the Casimir operators of the 
corresponding groups 

~ s o ( 3 ,  = YL(L+ 1) 

ESCc5)=  -pu(IJ+3) 

a 
2 

Esucs, = E n  +- n ( n  - l ) + p n ( n  + 3 )  - 6 y n  

E S U ( 6 ) =  ESUC61(N). 
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Now, using the formulae derived in the previous paragraph, we can calculate the 
energy spectra generated by every subgroup of the group SU(6) contained in the sub- 
groups chain (31). We define the metastate for this system in the form of the canonical 
density matrix 

A Bogusz and A Gbidi 

1 
z p - exp(-eH) (34) 

where H is the Hamiltonian corresponding to the eigenenergies (33). The parameter 
T =  118 we will call here 'a boson temperature', though the concept of temperature 
for this case seems to be problematic and requires further discussion. The E,,(,, term 
denotes an explicit dependence on the total number of bosons. We write down this 
term in the formulae for completeness, however in the energies calculations this term, 
to be consistent with (31), is neglected. Now we are able to write down the expressions 
for the motions generated by the groups S0(3),  SO(5) and SU(5). Physically, this 
means that we impose some constraints on the quantum motion of d- and s-bosons. 
The constraints are strongest for the group S0(3) ,  where finally not more than three 
degrees of freedom survive, i.e. the motion is constrained to rotations only. The SO(5) 
motion is connected with larger collective manifold: these SO(5) rotations can change 
the angular momentum but they keep the constant boson seniority number. The group 
of motion S u j j )  is the dynamicai symmetry group for the five-dimensionai harmonic 
oscillator and describes the quadrupole vibrations with a fixed number of the quad- 
rupole bosons. The detailed analysis of the collective manifolds corresponding to these 
groups of motion is an interesting problem. However it is beyond the scope of the 
present paper. 

Therefore, the rotational 'temperature'-dependent energy can be written in a rather 
compact form: 

EI,O(,,(L, MI, M2) 

Here and below we write the summation over N only for formal reasons. In fact, by 
assumption N is fixed, and the summation over N disappears. The SO(5) rotations 
produce a richer spectrum that includes a possible coupling of pure rotational states 
to the additional degrees of freedom offered by the SO(5) motion. The energies 
corresponding to the SO(5) motion are as follows: 

%SO(,,(U, x , L , M , ,  x2L2M2) 

= Eso(,)(v)+ESO(3)(LI) 
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As was mentioned above, the summation over N has in fact only one term and the 
last term reduces to Esu(61(N) and the SU(5) energies are not dependent on the 'boson 
temperature'. 

In all three formulae one can notice the appearance of the additional quantum 
numbers: for SO(3) group it is M2, for SO(5) group we find x2, L2 and M2 and for 
SU(5), in addition u2. However, because of the form of the boson Hamiltonian the 
energies are independent of these additional quantum numbers. In another case one 
would expect an appearance of some bands dependent on them. 

The eigenenergies in the limit T+O are of great interest. For T=O the density 
operator p becomes the projection operator describing the ground state of N bosons, 
namely 

p ( T = O )  = IN00000)(N00000~. - i n e  siaies of ihe  form jN6636Oj are invariant under aii subgroups in the chain (3ij, 
i.e. in respect of SU(5), SO(5) and SO(3). These subgroups are not able to excite the 
ground state (as in the case of the spherical quantum object with zero total angular 
momentum it is not possible to rotate it by the rotational operator to get higher angular 
momenta) and by the GCM procedure one cannot obtain any other states from it. Here 
we obtained the non-trivial spectra for all subgroups (figure 1) as the limit T+O. 

InvLl I V L I  i L1  

Flgan 1. In the figure a scheme of the AOCM classification of the energy levels of the 
considered boson system is shown. The parameters for the Hamiltonian are taken from 
[I41 as far "'Cd nucleus calculated within so-called 'vibrational limit.. 

i n  iigure i one can noiice ihe origin of ihe ieveis: some of ihem are generaied From 
the ground state by the rotational group SO(3). some by SO(5) and some 'require' 
SU(5) to be excited. For instance, the S0(3)-levels with L=O, 2, 4, 6, 8 have exactly 
the same energy as the SO(S)-levels with L = 2u. About these and other levels that 
survive after reduction of the collective degrees of freedom from SO(5) to SO(3) one 
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can say that they are quantum rotational states. After reduction from SU(5) to So(5) 
motion also a set of states survives. Within this set there are some states that disappear 
after the next reduction to SO(31, e.g. the state U = 2, x = 0 and L = 2. These states can 
be interpreted as the pure SO(5) excitations. The same analysis can be camed out for 
the SU(5) and so on. This procedure permits a division of the whole spectrum into 
subspectra generated by the appropriate groups of motions. This way one can introduce 
a new classification of the excitations. 

In figure 2 we have plotted the behaviour of the eigenlevel energies as a function 
of ‘boson temperature’. As was mentioned earlier the SU(S)-spectrum does not change 
with ‘temperature’ while using the Hamiltonian (33) and reproduces the full SU(6) 
spectrum. However, the energy spectra generated by SO(5) and SO(3) groups are 
‘temperature’-dependent. In figure 2 one can notice weaker dependence of the SO(5)- 
spectrum on the ‘boson temperature’ than that of the SO(3). It is a typical behaviour 
that can be explained by the fact that every S0(3)-state is a combination of all SU(6) 
states belonging to the irreducible representations [NI with a given angular momentum, 
but the SO(5)-states are only the appropriate combinations of the states with fixed U, 
x and L. In the figure one can see that in our case the minimum of the ground state 
coincides with T = 0. On the other hand, the parameter T can be treated as a new free 
parameter of the formalism allowing fitting of the metastate to the experimental data 
together with the Hamiltonian parameters. In this case the minimum of the ground 
state energy could be reached for T> 0. These problems require further investigation 
for realistic models. 

A Bogusz and A G6idi 

Boson Temperature [MeV] 

0 0.5 1 1.5 2 

Figure 2. A dependence of the SO(3) and SO(5) spectra on the ‘boson temperature’ for 
the same set of parameters as in figure 1. 

5. Conclusions 

The AGCM method allows for construction of the spaces of states generated by a density 
matrix and a given group of motions. The structure of the states space is dependent 
on the shape of the metastate which, in turn, can be dependent on some external 
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parameters. This property of the formalism should, in principle allow for description 
ofthe phenomena for which the state space of a system is changing during the process. 

This algebraical approach gives a tool for classification of the energy spectra with 
respect to subgroups of the group of motions, giving also information about the states 
intemal structure-in other words, by reduction of the degrees of freedom (constraints) 
one can conclude which kind of motion is responsible for the given energy level. In 
addition, in some cases one can obtain a double set of quantum numbers generated 
by the group oi  motion G-the second set is responsibie for an intemai structure of 
the physical system and allows for the appearance of extra bands, like rotational 
K-bands in the asymmetric top. 

To calculate by means of AOCM using the well known techniques of the GCM method 
in numerical codes for Griffin-Hill-Wheeler equations or in GOA approximation it is 
enough to change the overlap function and the reduced energy kemel. 

in this paper we have mentioned a number of open probiems that indicate certain 
directions for further investigation using the algebraic generator coordinate method, 
which seems to be a promising approach to many-body problems. 

Appendix 

In the appendix we give more detailed information of a rather more formal nature. 
The first problem is connected with equations (12) and (13). We have proved here the 
following: 

Lemma. Let Bep denote the null-ideal for the metastate generated by a pure state 
p = l-)(-l. The algebra element U belongs to Bo if and only if the corresponding 
many-body state, i.e. jadgu(g)T(g)l-) is the null vector in the many-body (GCM) 

state space. 

Proof: If U E B ~  thenNu=O, i.e. ( - I T ( g ) + J ,  dg’u(g’)T(g’)l-)=Ofor everyg. Multi- 
plying both sides of this equation by u * ( g )  and after integration with respect to g we 
obtain l l J o  dg  u(g)T(g)l-) l lx  = 0. The symbol X denotes here the many-body Hilbert 
._.__ ... L..-...A:-...:-- r A-..t-,T,-,~ , - , , ~ . . t . - - - - - ~ - ~  e.e- ..-: -I 

element one can obtain the equation ( p ;  U’ 0 U)= 0 for every U E L2( G )  that implies 

The group action in the collective space Xis given by equation (16). This representa- 
tion is unitary. This statement can be proven by direct calculation of the scalar product 

spdbc. ~ u r i v c r s c i y ,  vy ~nuirrpiyr irgj~  UK ~ t g ,  I t ~ , i - ,  - Y UJ LUG apyiqniac runjugaLru 

U E Bo. 

(LPul&J)x=(p; ( 2 L u ) x  0 (LeLu)).  

The above written form can be expressed as a double invariant integral as in equation 
(110). and by invariance of the Haar measure in respect of the left shift operator 9‘ 
it is equal to ( U ~ U ) ~ .  

The property (17) comes from direct calculations and the lemma. 
The properties of the overlap operator (24) can be determined on the basis of the 

( a )  The operator N is continuous in L’(G) (equivalently bounded) because the 

( 6 )  K is the Hermitian operator because the integral kernel is also Hermitian. 
(e) From the relation ( u I N ~ ) ~ q ~ ~ = ( p ;  u * o  u)+O it can be seen that the overlap 

following facts: 

group G is compact and the integral kemel ( p ;  T ( g - ’ g ’ ) )  is bounded (4). 

operator is positive. 
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( d )  The definition (24) and properties a and b determine (see [ 161) that the operator 
K is of Schmidt-Hilbert type. 

The theorems 3.1-3.3 from chapter IV of [12] are essential for proofs of some 
statements in the paper. For readers' convenience we have translated these theorems 
from [12]. 

Theorem 3.1. Assume the measure p is totally u-finite, y denotes a measurable function 
aiib :he iiitegia: jodf i<g)~[g>~(g)  exists aiid is fiiiiie f ix  every x ~ L ' i G j  then Y E  
Lq(G),  where I / p + l / q = l .  

Theorem 3.2. Given a continuous linear functional (y; ? defined on L'(G), there exists 
one and only one element y E L'( G )  that 

for x E L"( G). The norm of this functional is equal to Ilyl14. Conversely, every functional 
of the form (*) is linear and continuous in LP(G). 

7heorem 3.3. The operation A which associates every y E L4( G) with the functional 
(y;) on the space Lp(G) ,  1 < p  <CO, by the formula 

(Y; x)= \o ddg)x(g)y(g)  

is the isometric map from L4( G )  to Lp(G)* (the asterisk denotes here an adjoint space). 
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